
8085 Assembly Language Programs & Explanations

1. Statement: Store the data byte 32H into memory location 4000H.

Program 1:

MVI A, 32H : Store 32H in the accumulator
STA 4000H : Copy accumulator contents at address 4000H
HLT : Terminate program execution

Program 2:

LXI H : Load HL with 4000H
MVI M : Store 32H in memory location pointed by HL register pair
(4000H)
HLT : Terminate program execution

2. Statement: Exchange the contents of memory locations 2000H and 4000H

Program 1:

 LDA 2000H : Get the contents of memory location 2000H into
accumulator
 MOV B, A : Save the contents into B register
 LDA 4000H : Get the contents of memory location 4000Hinto
accumulator
 STA 2000H : Store the contents of accumulator at address 2000H
 MOV A, B : Get the saved contents back into A register
 STA 4000H : Store the contents of accumulator at address 4000H

Program 2:
 LXI H 2000H : Initialize HL register pair as a pointer to
memory location 2000H.
 LXI D 4000H : Initialize DE register pair as a pointer to
memory location 4000H.
 MOV B, M : Get the contents of memory location 2000H into B
register.
 LDAX D : Get the contents of memory location 4000H into A
register.
 MOV M, A : Store the contents of A register into memory
location 2000H.
 MOV A, B : Copy the contents of B register into accumulator.
 STAX D : Store the contents of A register into memory location
4000H.
 HLT : Terminate program execution.

3.Sample problem

 (4000H) = 14H
 (4001H) = 89H
 Result = 14H + 89H = 9DH

 Source program

 LXI H 4000H : HL points 4000H
 MOV A, M : Get first operand
 INX H : HL points 4001H
 ADD M : Add second operand
 INX H : HL points 4002H
 MOV M, A : Store result at 4002H
 HLT : Terminate program execution

4.Statement: Subtract the contents of memory location 4001H from the memory
location 2000H and place the result in memory location 4002H.

Program - 4: Subtract two 8-bit numbers

Sample problem:

(4000H) = 51H
(4001H) = 19H
Result = 51H - 19H = 38H

Source program:

 LXI H, 4000H : HL points 4000H
 MOV A, M : Get first operand
 INX H : HL points 4001H
 SUB M : Subtract second operand
 INX H : HL points 4002H
 MOV M, A : Store result at 4002H.
 HLT : Terminate program execution

5.Statement: Add the 16-bit number in memory locations 4000H and 4001H to
the 16-bit number in memory locations 4002H and 4003H. The most significant
eight bits of the two numbers to be added are in memory locations 4001H and
4003H. Store the result in memory locations 4004H and 4005H with the most
significant byte in memory location 4005H.

Program - 5.a: Add two 16-bit numbers - Source Program 1

Sample problem:

(4000H) = 15H
(4001H) = 1CH
(4002H) = B7H
(4003H) = 5AH
Result = 1C15 + 5AB7H = 76CCH
(4004H) = CCH
(4005H) = 76H

Source Program 1:
LHLD 4000H : Get first I6-bit number in HL
XCHG : Save first I6-bit number in DE
LHLD 4002H : Get second I6-bit number in HL
MOV A, E : Get lower byte of the first number
ADD L : Add lower byte of the second number
MOV L, A : Store result in L register
MOV A, D : Get higher byte of the first number
ADC H : Add higher byte of the second number with CARRY
MOV H, A : Store result in H register
SHLD 4004H : Store I6-bit result in memory locations 4004H and
4005H.
HLT : Terminate program execution

6.Statement: Add the contents of memory locations 40001H and 4001H and place
the result in the memory locations 4002Hand 4003H.

Sample problem:

 (4000H) = 7FH
 (400lH) = 89H
Result = 7FH + 89H = lO8H
 (4002H) = 08H
 (4003H) = 0lH

Source program:

 LXI H, 4000H :HL Points 4000H
 MOV A, M :Get first operand
 INX H :HL Points 4001H
 ADD M :Add second operand
 INX H :HL Points 4002H
 MOV M, A :Store the lower byte of result at 4002H
 MVIA, 00 :Initialize higher byte result with 00H

 ADC A :Add carry in the high byte result
 INX H :HL Points 4003H
 MOV M, A :Store the higher byte of result at 4003H
 HLT :Terminate program execution

7.Statement: Subtract the 16-bit number in memory locations 4002H and 4003H
from the 16-bit number in memory locations 4000H and 4001H. The most
significant eight bits of the two numbers are in memory locations 4001H and 4003H.
Store the result in memory locations 4004H and 4005H with the most significant
byte in memory location 4005H.

Sample problem

(4000H) = 19H
(400IH) = 6AH
(4004H) = I5H (4003H) = 5CH
Result = 6A19H - 5C15H = OE04H
(4004H) = 04H
(4005H) = OEH

Source program:

LHLD 4000H : Get first 16-bit number in HL
XCHG : Save first 16-bit number in DE
LHLD 4002H : Get second 16-bit number in HL
MOV A, E : Get lower byte of the first number
SUB L : Subtract lower byte of the second number
MOV L, A : Store the result in L register
MOV A, D : Get higher byte of the first number
SBB H : Subtract higher byte of second number with borrow
MOV H, A : Store l6-bit result in memory locations 4004H and
4005H.
SHLD 4004H : Store l6-bit result in memory locations 4004H and
4005H.
HLT : Terminate program execution

8.Statement: Find the l's complement of the number stored at memory location
4400H and store the complemented number at memory location 4300H.

Sample problem:

 (4400H) = 55H

 Result = (4300B) = AAB
Source program:

LDA 4400B : Get the number
CMA : Complement number
STA 4300H : Store the result
HLT : Terminate program execution

9.Statement: Find the 2's complement of the number stored at memory location
4200H and store the complemented number at memory location 4300H.

Sample problem:

 (4200H) = 55H
 Result = (4300H) = AAH + 1 = ABH

Source program:

LDA 4200H : Get the number
CMA : Complement the number
ADI, 01 H : Add one in the number
STA 4300H : Store the result
HLT : Terminate program execution

10.Statement: Pack the two unpacked BCD numbers stored in memory locations
4200H and 4201H and store result in memory location 4300H. Assume the least
significant digit is stored at 4200H.

Sample problem:
 (4200H) = 04
 (4201H) = 09
 Result = (4300H) = 94

Source program

LDA 4201H : Get the Most significant BCD digit
RLC
RLC
RLC
RLC : Adjust the position of the second digit (09 is changed to
90)

ANI FOH : Make least significant BCD digit zero
MOV C, A : store the partial result
LDA 4200H : Get the lower BCD digit
ADD C : Add lower BCD digit
STA 4300H : Store the result
HLT : Terminate program execution

11.Statement: Two digit BCD number is stored in memory location 4200H.
Unpack the BCD number and store the two digits in memory locations 4300H and
4301H such that memory location 4300H will have lower BCD digit.

Sample problem

 (4200H) = 58
 Result = (4300H) = 08 and
 (4301H) = 05
Source program

LDA 4200H : Get the packed BCD number
ANI FOH : Mask lower nibble
RRC
RRC
RRC
RRC : Adjust higher BCD digit as a lower digit
STA 4301H : Store the partial result
LDA 4200H : .Get the original BCD number
ANI OFH : Mask higher nibble
STA 4201H : Store the result
HLT : Terminate program execution

12.Statement:Read the program given below and state the contents of all
registers after the execution of each instruction in sequence.

Main program:

4000H LXI SP, 27FFH
4003H LXI H, 2000H
4006H LXI B, 1020H
4009H CALL SUB
400CH HLT

Subroutine program:

4100H SUB: PUSH B
4101H PUSH H
4102H LXI B, 4080H
4105H LXI H, 4090H
4108H SHLD 2200H
4109H DAD B
410CH POP H
410DH POP B
410EH RET

13.Statement:Write a program to shift an eight bit data four bits right. Assume
that data is in register C.

 Source program:

 MOV A, C
 RAR
 RAR
 RAR
 RAR
 MOV C, A
 HLT

14.Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL
register pair

Source program:

DAD H : Adds HL data with HL data

15.Statement: Write a set of instructions to alter the contents of flag register in
8085.

PUSH PSW : Save flags on stack
POP H : Retrieve flags in 'L'
MOV A, L : Flags in accumulator
CMA : Complement accumulator
MOV L, A : Accumulator in 'L'

PUSH H : Save on stack
POP PSW : Back to flag register
HLT :Terminate program execution

16.Statement: Calculate the sum of series of numbers. The length of the series is
in memory location 4200H and the series begins from memory location 4201H.
a. Consider the sum to be 8 bit number. So, ignore carries. Store the sum at memory
location 4300H.
b. Consider the sum to be 16 bit number. Store the sum at memory locations 4300H
and 4301H

a. Sample problem

4200H = 04H
4201H = 10H
4202H = 45H
4203H = 33H
4204H = 22H
Result = 10 +41 + 30 + 12 = H
4300H = H

Source program:

LDA 4200H
MOV C, A : Initialize counter
SUB A : sum = 0
LXI H, 420lH : Initialize pointer
BACK: ADD M : SUM = SUM + data
INX H : increment pointer
DCR C : Decrement counter
JNZ BACK : if counter 0 repeat
STA 4300H : Store sum
HLT : Terminate program execution

b. Sample problem

4200H = 04H
420lH = 9AH
4202H = 52H
4203H = 89H
4204H = 3EH
Result = 9AH + 52H + 89H + 3EH = H
4300H = B3H Lower byte
4301H = 0lH Higher byte

Source program:

 LDA 4200H
 MOV C, A : Initialize counter
 LXI H, 4201H : Initialize pointer
 SUB A :Sum low = 0
 MOV B, A : Sum high = 0
 BACK: ADD M : Sum = sum + data
 JNC SKIP
 INR B : Add carry to MSB of SUM
 SKIP: INX H : Increment pointer
 DCR C : Decrement counter
 JNZ BACK : Check if counter 0 repeat
 STA 4300H : Store lower byte
 MOV A, B
 STA 4301H : Store higher byte
 HLT :Terminate program execution

17.Statement: Multiply two 8-bit numbers stored in memory locations 2200H and
2201H by repetitive addition and store the result in memory locations 2300H and
2301H.

Sample problem:

 (2200H) = 03H
 (2201H) = B2H
 Result = B2H + B2H + B2H = 216H
 = 216H
 (2300H) = 16H
 (2301H) = 02H

Source program

 LDA 2200H
 MOV E, A
 MVI D, 00 : Get the first number in DE register pair
 LDA 2201H
 MOV C, A : Initialize counter
 LX I H, 0000 H : Result = 0
 BACK: DAD D : Result = result + first number
 DCR C : Decrement count
 JNZ BACK : If count 0 repeat
 SHLD 2300H : Store result
 HLT : Terminate program execution

18.Statement:Divide 16 bit number stored in memory locations 2200H and 2201H
by the 8 bit number stored at memory location 2202H. Store the quotient in memory
locations 2300H and 2301H and remainder in memory locations 2302H and 2303H.

Sample problem
 (2200H) = 60H
 (2201H) = A0H
 (2202H) = l2H
 Result = A060H/12H = 8E8H Quotient and 10H remainder
 (2300H) = E8H
 (2301H) = 08H
 (2302H= 10H
 (2303H) 00H

Source program

 LHLD 2200H : Get the dividend
 LDA 2202H : Get the divisor
 MOV C, A
 LXI D, 0000H : Quotient = 0
BACK: MOV A, L
 SUB C : Subtract divisor
 MOV L, A : Save partial result
 JNC SKIP : if CY 1 jump
 DCR H : Subtract borrow of previous subtraction
SKIP: INX D : Increment quotient
 MOV A, H
 CPI, 00 : Check if dividend < divisor
 JNZ BACK : if no repeat
 MOV A, L
 CMP C
 JNC BACK
 SHLD 2302H : Store the remainder
 XCHG
 SHLD 2300H : Store the quotient
 HLT : Terminate program execution

19.Statement:Find the number of negative elements (most significant bit 1) in a
block of data. The length of the block is in memory location 2200H and the block
itself begins in memory location 2201H. Store the number of negative elements in
memory location 2300H

Sample problem

 (2200H) = 04H

 (2201H) = 56H
 (2202H) = A9H
 (2203H) = 73H
 (2204H) = 82H

Result = 02 since 2202H and 2204H contain numbers with a MSB of 1.

Source program

 LDA 2200H
 MOV C, A : Initialize count
 MVI B, 00 : Negative number = 0
 LXI H, 2201H : Initialize pointer
 BACK: MOV A, M : Get the number
 ANI 80H : Check for MSB
 JZ SKIP : If MSB = 1
 INR B : Increment negative number count
 SKIP: INX H : Increment pointer
 DCR C : Decrement count
 JNZ BACK : If count 0 repeat
 MOV A, B
 STA 2300H : Store the result
 HLT : Terminate program execution

20.Statement:Find the largest number in a block of data. The length of the block
is in memory location 2200H and the block itself starts from memory location
2201H.
Store the maximum number in memory location 2300H. Assume that the numbers
in the block are all 8 bit unsigned binary numbers.

Sample problem

 (2200H) = 04
 (2201H) = 34H
 (2202H) = A9H
 (2203H) = 78H
 (2204H) =56H
 Result = (2202H) = A9H

Source program

 LDA 2200H
 MOV C, A : Initialize counter
 XRA A : Maximum = Minimum possible value = 0
 LXI H, 2201H : Initialize pointer
 BACK: CMP M : Is number> maximum
 JNC SKIP : Yes, replace maximum

 MOV A, M
 SKIP: INX H
 DCR C
 JNZ BACK
 STA 2300H : Store maximum number
 HLT : Terminate program execution
21.Statement:Write a program to count number of l's in the contents of D
register and store the count in the B register.

 Source program:

 MVI B, 00H
 MVI C, 08H
 MOV A, D
 BACK: RAR
 JNC SKIP
 INR B
 SKIP: DCR C
 JNZ BACK
 HLT

22.Statement:Write a program to sort given 10 numbers from memory location
2200H in the ascending order.

Source program:

 MVI B, 09 : Initialize counter
 START : LXI H, 2200H: Initialize memory pointer
 MVI C, 09H : Initialize counter 2
 BACK: MOV A, M : Get the number
 INX H : Increment memory pointer
 CMP M : Compare number with next number
 JC SKIP : If less, don't interchange
 JZ SKIP : If equal, don't interchange
 MOV D, M
 MOV M, A
 DCX H
 MOV M, D
 INX H : Interchange two numbers
 SKIP:DCR C : Decrement counter 2
 JNZ BACK : If not zero, repeat
 DCR B : Decrement counter 1
 JNZ START
 HLT : Terminate program execution

23.Statement:Calculate the sum of series of even numbers from the list of
numbers. The length of the list is in memory location 2200H and the series itself
begins from memory location 2201H. Assume the sum to be 8 bit number so you can
ignore carries and store the sum at memory location 2Sample problem:

 2200H= 4H
 2201H= 20H
 2202H= l5H
 2203H= l3H
 2204H= 22H
 Result 22l0H= 20 + 22 = 42H
 = 42H

Source program:

 LDA 2200H
 MOV C, A : Initialize counter
 MVI B, 00H : sum = 0
 LXI H, 2201H : Initialize pointer
 BACK: MOV A, M : Get the number
 ANI 0lH : Mask Bit l to Bit7
 JNZ SKIP : Don't add if number is ODD
 MOV A, B : Get the sum
 ADD M : SUM = SUM + data
 MOV B, A : Store result in B register
 SKIP: INX H : increment pointer
 DCR C : Decrement counter
 JNZ BACK : if counter 0 repeat
 STA 2210H : store sum
 HLT : Terminate program execution

24.Statement:Calculate the sum of series of odd numbers from the list of
numbers. The length of the list is in memory location 2200H and the series itself
begins from memory location 2201H. Assume the sum to be 16-bit. Store the sum at
memory locations 2300H and 2301H.

Sample problem:

 2200H = 4H
 2201H= 9AH
 2202H= 52H
 2203H= 89H
 2204H= 3FH
 Result = 89H + 3FH = C8H
 2300H= H Lower byte
 2301H = H Higher byte

Source program

 LDA 2200H
 MOV C, A : Initialize counter
 LXI H, 2201H : Initialize pointer
 MVI E, 00 : Sum low = 0
 MOV D, E : Sum high = 0
 BACK: MOV A, M : Get the number
 ANI 0lH : Mask Bit 1 to Bit7
 JZ SKIP : Don't add if number is even
 MOV A, E : Get the lower byte of sum
 ADD M : Sum = sum + data
 MOV E, A : Store result in E register
 JNC SKIP
 INR D : Add carry to MSB of SUM
 SKIP: INX H : Increment pointer
 DCR C : Decrement

25.Statement:Find the square of the given numbers from memory location 6100H
and store the result from memory location 7000H

Source Program:

 LXI H, 6200H : Initialize lookup table pointer
 LXI D, 6100H : Initialize source memory pointer
 LXI B, 7000H : Initialize destination memory pointer
 BACK: LDAX D : Get the number
 MOV L, A : A point to the square
 MOV A, M : Get the square
 STAX B : Store the result at destination memory location
 INX D : Increment source memory pointer
 INX B : Increment destination memory pointer
 MOV A, C
 CPI 05H : Check for last number
 JNZ BACK : If not repeat
 HLT : Terminate program execution

26.Statement: Search the given byte in the list of 50 numbers stored in the
consecutive memory locations and store the address of memory location in the
memory locations 2200H and 2201H. Assume byte is in the C register and starting
address of the list is 2000H. If byte is not found store 00 at 2200H and 2201H.

Source program:

 LX I H, 2000H : Initialize memory pointer 52H
 MVI B, 52H : Initialize counter
 BACK: MOV A, M : Get the number
 CMP C : Compare with the given byte
 JZ LAST : Go last if match occurs
 INX H : Increment memory pointer
 DCR B : Decrement counter
 JNZ B : I f not zero, repeat
 LXI H, 0000H
 SHLD 2200H
 JMP END : Store 00 at 2200H and 2201H
 LAST: SHLD 2200H : Store memory address
 END: HLT : Stop

27.Statement: Two decimal numbers six digits each, are stored in BCD package
form. Each number occupies a sequence of byte in the memory. The starting
address of first number is 6000H Write an assembly language program that adds
these two numbers and stores the sum in the same format starting from memory
location 6200H

 Source Program:

 LXI H, 6000H : Initialize pointer l to first number
 LXI D, 6l00H : Initialize pointer2 to second number
 LXI B, 6200H : Initialize pointer3 to result
 STC
 CMC : Carry = 0
 BACK: LDAX D : Get the digit
 ADD M : Add two digits
 DAA : Adjust for decimal
 STAX.B : Store the result
 INX H : Increment pointer 1
 INX D : Increment pointer2
 INX B : Increment result pointer
 MOV A, L
 CPI 06H : Check for last digit
 JNZ BACK : If not last digit repeat
 HLT : Terminate program execution

28.Statement: Add 2 arrays having ten 8-bit numbers each and generate a third
array of result. It is necessary to add the first element of array 1 with the first

element of array-2 and so on. The starting addresses of array l, array2 and array3
are 2200H, 2300H and 2400H, respectively.

Source Program:

 LXI H, 2200H : Initialize memory pointer 1
 LXI B, 2300H : Initialize memory pointer 2
 LXI D, 2400H : Initialize result pointer
 BACK: LDAX B : Get the number from array 2
 ADD M : Add it with number in array 1
 STAX D : Store the addition in array 3
 INX H : Increment pointer 1
 INX B : Increment pointer2
 INX D : Increment result pointer
 MOV A, L
 CPI 0AH : Check pointer 1 for last number
 JNZ BACK : If not, repeat
 HLT : Stop

29.Statement: Write an assembly language program to separate even numbers
from the given list of 50 numbers and store them in the another list starting from
2300H. Assume starting address of 50 number list is 2200H

Source Program:

 LXI H, 2200H : Initialize memory pointer l
 LXI D, 2300H : Initialize memory pointer2
 MVI C, 32H : Initialize counter
 BACK:MOV A, M : Get the number
 ANI 0lH : Check for even number
 JNZ SKIP : If ODD, don't store
 MOV A, M : Get the number
 STAX D : Store the number in result list
 INX D : Increment pointer 2
 SKIP: INX H : Increment pointer l
 DCR C : Decrement counter
 JNZ BACK : If not zero, repeat
 HLT : Stop

30.Statement: Write assembly language program with proper comments for the
following:

 A block of data consisting of 256 bytes is stored in memory starting at 3000H.
This block is to be shifted (relocated) in memory from 3050H onwards. Do not shift
the block or part of the block anywhere else in the memory.

Source Program:

 Two blocks (3000 - 30FF and 3050 - 314F) are overlapping. Therefore it
is necessary to transfer last byte first and first byte last.

 MVI C, FFH : Initialize counter
 LX I H, 30FFH : Initialize source memory pointer 3l4FH
 LXI D, 314FH : Initialize destination memory pointer
BACK: MOV A, M : Get byte from source memory block
 STAX D : Store byte in the destination memory block
 DCX H : Decrement source memory pointer
 DCX : Decrement destination memory pointer
 DCR C : Decrement counter
 JNZ BACK : If counter 0 repeat
 HLT : Stop execution

31.Statement: Add even parity to a string of 7-bit ASCII characters. The length
of the string is in memory location 2040H and the string itself begins in memory
location 2041H. Place even parity in the most significant bit of each character.

Source Program:

 LXI H, 2040H
 MOV C ,M : Counter for character
REPEAT:INX H : Memory pointer to character
 MOV A,M : Character in accumulator
 ORA A : ORing with itself to check parity.
 JPO PAREVEN : If odd parity place
 ORI 80H even parity in D7 (80).
PAREVEN:MOV M , A : Store converted even parity character.
 DCR C : Decrement counter.
 JNZ REPEAT : If not zero go for next character.
 HLT

32.Statement: A list of 50 numbers is stored in memory, starting at 6000H. Find
number of negative, zero and positive numbers from this list and store these results
in memory locations 7000H, 7001H, and 7002H respectively

Source Program:

 LXI H, 6000H : Initialize memory pointer
 MVI C, 00H : Initialize number counter
 MVI B, 00H : Initialize negative number counter
 MVI E, 00H : Initialize zero number counter
BEGIN:MOV A, M : Get the number
 CPI 00H : If number = 0
 JZ ZERONUM : Goto zeronum
 ANI 80H : If MSB of number = 1i.e. if
 JNZ NEGNUM number is negative goto NEGNUM
 INR D : otherwise increment positive number counter
 JMP LAST
ZERONUM:INR E : Increment zero number counter
 JMP LAST
NEGNUM:INR B : Increment negative number counter
LAST:INX H : Increment memory pointer
 INR C : Increment number counter
 MOV A, C
 CPI 32H : If number counter = 5010 then
 JNZ BEGIN : Store otherwise check next number
 LXI H, 7000 : Initialize memory pointer.
 MOV M, B : Store negative number.
 INX H
 MOV M, E : Store zero number.
 INX H
 MOV M, D : Store positive number.
 HLT : Terminate execution

33.Statement:Write an 8085 assembly language program to insert a string of four
characters from the tenth location in the given array of 50 characters

Solution:
 Step 1: Move bytes from location 10 till the end of array by four bytes
downwards.
 Step 2: Insert four bytes at locations 10, 11, 12 and 13.

Source Program:

 LXI H, 2l31H : Initialize pointer at the last location of array.
 LXI D, 2l35H : Initialize another pointer to point the last
location of array after insertion.
AGAIN: MOV A, M : Get the character

 STAX D : Store at the new location
 DCX D : Decrement destination pointer
 DCX H : Decrement source pointer
 MOV A, L : [check whether desired
 CPI 05H bytes are shifted or not]
 JNZ AGAIN : if not repeat the process
 INX H : adjust the memory pointer
 LXI D, 2200H : Initialize the memory pointer to point the string to
be inserted
REPE: LDAX D : Get the character
 MOV M, A : Store it in the array
 INX D : Increment source pointer
 INX H : Increment destination pointer
 MOV A, E : [Check whether the 4 bytes
 CPI 04 are inserted]
 JNZ REPE : if not repeat the process
 HLT : stop

34.Statement:Write an 8085 assembly language program to delete a string of 4
characters from the tenth location in the given array of 50 characters.

Solution: Shift bytes from location 14 till the end of array upwards by 4
characters i.e. from location 10 onwards.

Source Program:

LXI H, 2l0DH :Initialize source memory pointer at the 14thlocation
of the array.
LXI D, 2l09H : Initialize destn memory pointer at the 10th location
of the array.
MOV A, M : Get the character
STAX D : Store character at new location
INX D : Increment destination pointer
INX H : Increment source pointer
MOV A, L : [check whether desired
CPI 32H bytes are shifted or not]
JNZ REPE : if not repeat the process
HLT : stop

35.Statement:Multiply the 8-bit unsigned number in memory location 2200H by
the 8-bit unsigned number in memory location 2201H. Store the 8 least significant
bits of the result in memory location 2300H and the 8 most significant bits in
memory location 2301H.

Sample problem:

 (2200) = 1100 (0CH)
 (2201) = 0101 (05H)
 Multiplicand = 1100 (1210)
 Multiplier = 0101 (510)
 Result = 12 x 5 = (6010)

Source program

 LXI H, 2200 : Initialize the memory pointer
 MOV E, M : Get multiplicand
 MVI D, 00H : Extend to 16-bits
 INX H : Increment memory pointer
 MOV A, M : Get multiplier
 LXI H, 0000 : Product = 0
 MVI B, 08H : Initialize counter with count 8
 MULT: DAD H : Product = product x 2
 RAL
 JNC SKIP : Is carry from multiplier 1 ?
 DAD D : Yes, Product =Product + Multiplicand
 SKIP: DCR B : Is counter = zero
 JNZ MULT : no, repeat
 SHLD 2300H : Store the result
 HLT : End of program

36.Statement:Divide the 16-bit unsigned number in memory locations 2200H and
2201H (most significant bits in 2201H) by the B-bit unsigned number in memory
location 2300H store the quotient in memory location 2400H and remainder in
2401H

Assumption: The most significant bits of both the divisor and dividend are
zero.

Source program

 MVI E, 00 : Quotient = 0
 LHLD 2200H : Get dividend
 LDA 2300 : Get divisor
 MOV B, A : Store divisor
 MVI C, 08 : Count = 8
NEXT: DAD H : Dividend = Dividend x 2
 MOV A, E
 RLC
 MOV E, A : Quotient = Quotient x 2

 MOV A, H
 SUB B : Is most significant byte of Dividend > divisor
 JC SKIP : No, go to Next step
 MOV H, A : Yes, subtract divisor
 INR E : and Quotient = Quotient + 1
SKIP:DCR C : Count = Count - 1
 JNZ NEXT : Is count =0 repeat
 MOV A, E
 STA 2401H : Store Quotient
 Mov A, H
 STA 2410H : Store remainder
 HLT : End of program

37.DAA instruction is not present. Write a sub routine which will perform the same
task as DAA.

Sample Problem:

Execution of DAA instruction:
1. If the value of the low order four bits (03-00) in the accumulator is
greater than 9 or if auxiliary carry flag is set, the instruction adds 6 '(06) to
the low-order four bits.
2. If the value of the high-order four bits (07-04) in the accumulator is
greater than 9 or if carry flag is set, the instruction adds 6(06) to the high-
order four bits.

Source Program:

 LXI SP, 27FFH : Initialize stack pointer
 MOV E, A : Store the contents of accumulator
 ANI 0FH : Mask upper nibble
 CPI 0A H : Check if number is greater than 9
 JC SKIP : if no go to skip
 MOV A, E : Get the number
 ADI 06H : Add 6 in the number
 JMP SECOND : Go for second check
SKIP: PUSH PSW : Store accumulator and flag contents in stack
 POP B : Get the contents of accumulator in B register and
flag register contents in C register
 MOV A, C : Get flag register contents in accumulator
 ANI 10H : Check for bit 4
 JZ SECOND : if zero, go for second check
 MOV A, E : Get the number
 ADI 06 : Add 6 in the number
SECOND: MOV E, A : Store the contents of accumulator
 ANI FOH : Mask lower nibble
 RRC
 RRC
 RRC

 RRC : Rotate number 4 bit right
 CPI 0AH : Check if number is greater than 9
 JC SKIPl : if no go to skip 1
 MOV A, E : Get the number
 ADI 60 H : Add 60 H in the number
 JMP LAST : Go to last
SKIP1: JNC LAST : if carry flag = 0 go to last
 MOV A, E : Get the number
 ADI 60 H : Add 60 H in the number
LAST: HLT

38.tement:To test RAM by writing '1' and reading it back and later writing '0'
(zero) and reading it back. RAM addresses to be checked are 40FFH to 40FFH. In
case of any error, it is indicated by writing 01H at port 10H

Source Program:

 LXI H, 4000H : Initialize memory pointer
BACK: MVI M, FFH : Writing '1' into RAM
 MOV A, M : Reading data from RAM
 CPI FFH : Check for ERROR
 JNZ ERROR : If yes go to ERROR
 INX H : Increment memory pointer
 MOV A, H
 CPI SOH : Check for last check
 JNZ BACK : If not last, repeat
 LXI H, 4000H : Initialize memory pointer
BACKl: MVI M, OOH : Writing '0' into RAM
 MOV A, M : Reading data from RAM
 CPI OOH : Check for ERROR
 INX H : Increment memory pointer
 MOV A, H
 CPI SOH : Check for last check
 JNZ BACKl : If not last, repeat
 HLT : Stop Execution

39.tement:Write an assembly language program to generate fibonacci number

Source Program:

 MVI D, COUNT : Initialize counter
 MVI B, 00 : Initialize variable to store previous number
 MVI C, 01 : Initialize variable to store current number

 MOV A, B :[Add two numbers]
BACK: ADD C :[Add two numbers]
 MOV B, C : Current number is now previous number
 MOV C, A : Save result as a new current number
 DCR D : Decrement count
 JNZ BACK : if count 0 go to BACK
 HLT : Stop
40.tement:Write a program to generate a delay of 0.4 sec if the crystal frequency
is 5 MHz

Calculation: In 8085, the operating frequency is half of the crystal
frequency,
ie.Operating frequency = 5/2 = 2.5 MHz
 Time for one T -state =
Number of T-states required =
 = 1 x 106
Source Program:
LXI B, count : 16 - bit count
BACK: DCX B : Decrement count
MOV A, C
ORA B : Logically OR Band C
JNZ BACK : If result is not zero repeat

41.tement: Arrange an array of 8 bit unsigned no in descending order

Source Program:

 START:MVI B, 00 ; Flag = 0
 LXI H, 4150 ; Count = length of array
 MOV C, M
 DCR C ; No. of pair = count -1
 INX H ; Point to start of array
 LOOP:MOV A, M ; Get kth element
 INX H
 CMP M ; Compare to (K+1) th element
 JNC LOOP 1 ; No interchange if kth >= (k+1) th
 MOV D, M ; Interchange if out of order
 MOV M, A ;
 DCR H
 MOV M, D
 INX H
 MVI B, 01H ; Flag=1
 LOOP 1:DCR C ; count down
 JNZ LOOP ;
 DCR B ; is flag = 1?

 JZ START ; do another sort, if yes
 HLT ; If flag = 0, step execution

42.tement: Transfer ten bytes of data from one memory to another memory block.
Source memory block starts from memory location 2200H where as destination
memory block starts from memory location 2300H

Source Program:

 LXI H, 4150 : Initialize memory pointer
 MVI B, 08 : count for 8-bit
 MVI A, 54
 LOOP : RRC
 JC LOOP1
 MVI M, 00 : store zero it no carry
 JMP COMMON
 LOOP2: MVI M, 01 : store one if there is a carry
COMMON: INX H
 DCR B : check for carry
 JNZ LOOP
 HLT : Terminate the program

43.tement: Program to calculate the factorial of a number between 0 to 8

Source program

 LXI SP, 27FFH ; Initialize stack pointer
 LDA 2200H ; Get the number
 CPI 02H ; Check if number is greater than 1
 JC LAST
 MVI D, 00H ; Load number as a result
 MOV E, A
 DCR A
 MOV C,A ; Load counter one less than number
 CALL FACTO ; Call subroutine FACTO
 XCHG ; Get the result in HL
 SHLD 2201H ; Store result in the memory
 JMP END
LAST: LXI H, 000lH ; Store result = 01
END: SHLD 2201H
 HLT

44.tement:Write a program to find the Square Root of an 8 bit binary number.
The binary number is stored in memory location 4200H and store the square root in
4201H.

Source Program:

 LDA 4200H : Get the given data(Y) in A register
 MOV B,A : Save the data in B register
 MVI C,02H : Call the divisor(02H) in C register
 CALL DIV : Call division subroutine to get initial value(X)
in D-reg
 REP: MOV E,D : Save the initial value in E-reg
 MOV A,B : Get the dividend(Y) in A-reg
 MOV C,D : Get the divisor(X) in C-reg
 CALL DIV : Call division subroutine to get initial
value(Y/X) in D-reg
 MOV A, D : Move Y/X in A-reg
 ADD E : Get the((Y/X) + X) in A-reg
 MVI C, 02H : Get the divisor(02H) in C-reg
 CALL DIV : Call division subroutine to get ((Y/X) + X)/2
in D-reg.This is XNEW
 MOV A, E : Get Xin A-reg
 CMP D : Compare X and XNEW
 JNZ REP : If XNEW is not equal to X, then repeat
 STA 4201H : Save the square root in memory
 HLT : Terminate program execution

45.tement:Write a simple program to Split a HEX data into two nibbles and store
it in memory

Source Program:

 LXI H, 4200H : Set pointer data for array
 MOV B,M : Get the data in B-reg
 MOV A,B : Copy the data to A-reg
 ANI OFH : Mask the upper nibble
 INX H : Increment address as 4201
 MOV M,A : Store the lower nibble in memory
 MOV A,B : Get the data in A-reg
 ANI FOH : Bring the upper nibble to lower nibble position
 RRC
 RRC
 RRC
 RRC
 INX H
 MOV M,A : Store the upper nibble in memory
 HLT : Terminate program execution

46.tement: Add two 4 digit BCD numbers in HL and DE register pairs and store
result in memory locations, 2300H and 2301H. Ignore carry after 16 bit.

Sample Problem:

 (HL) =3629
 (DE) =4738
 Step 1 : 29 + 38 = 61 and auxiliary carry flag = 1
 :.add 06
 61 + 06 = 67
 Step 2 : 36 + 47 + 0 (carry of LSB) = 7D

Lower nibble of addition is greater than 9, so add 6.
 7D + 06 = 83
 Result = 8367

Source program

 MOV A, L : Get lower 2 digits of no. 1
 ADD E : Add two lower digits
 DAA : Adjust result to valid BCD
 STA 2300H : Store partial result
 MOV A, H : Get most significant 2 digits of number
 ADC D : Add two most significant digits
 DAA : Adjust result to valid BCD
 STA 2301H : Store partial result
 HLT : Terminate program execution

47.tement: Subtract the BCD number stored in E register from the number stored
in the D register.

Source Program:

 MVI A,99H
 SUB E : Find the 99's complement of subtrahend
 INR A : Find 100's complement of subtrahend
 ADD D : Add minuend to 100's complement of subtrahend
 DAA : Adjust for BCD
 HLT : Terminate program execution

48.tement: Write an assembly language program to multiply 2 BCD numbers

Source Program:

 MVI C, Multiplier : Load BCD multiplier
 MVI B, 00 : Initialize counter
 LXI H, 0000H : Result = 0000
 MVI E, multiplicand : Load multiplicand
 MVI D, 00H : Extend to 16-bits
BACK: DAD D : Result Result + Multiplicand
 MOV A, L : Get the lower byte of the result
 ADI, 00H
 DAA : Adjust the lower byte of result to BCD.
 MOV L, A : Store the lower byte of result
 MOV A, H : Get the higher byte of the result
 ACI, 00H
 DAA : Adjust the higher byte of the result to BCD
 MOV H, A : Store the higher byte of result.
 MOV A, B : [Increment
 ADI 01H : counter
 DAA : adjust it to BCD and
 MOV B,A : store it]
 CMP C : Compare if count = multiplier
 JNZ BACK : if not equal repeat
 HLT : Stop

